rsensor Documentation

Author

Oct 26, 2020






Contents:

Introduction

Usage

2.1 Imstallation . . . . . . . . . e e e e

2.2 Getting Started . . . ... L.

2.3 GeneratingTestData . . . . . .. ... ... ... ... ...,

Config File Format

3.1 Format . . .. .. e e e

32 MQTT Section . . . . .. . . . ittt ittt e

3.3 Database section . . . . . . ... ...
33.1 SQLITEDatabase . . . . .. ... ..............
332 MySQLDatabase . . . ... ... ... ...,

MQTT Interface

4.1  Info Topic rsensor/node/+/info[r] . . . . . . .. .. ... ... ...
4.1.1 DataStructure . . . . . . . . ..o e e e
4.1.2  Node Information <node_description> . . . . . . ... ...
4.1.3  Sensor Information <sensor_description> . . . ... .. ..
4.1.4  Actor Information <actor_description>. . . . . . .. .. ..

4.2 Data Topic rsensor/node/+/sensor/data . . . . . . .. ... ... ...

Database Interface

5.1 Supported Databases . . . . . ... .. ... .. L.
5.2 Tables, Viewsand Indexes . . . . . . . . . . . .. ... ... ...,
521 Tables . . . . . ... e
522 VIBWS . . o i e e e e e
523 Indexes . . . . . ..
5.3 SQliteCommands . . ... ... .. ... ... ...
54 MySQLCommands . . ... ... ... ... ... ... ...,
Using the Sensor Data
6.1 Dashboards with Grafana . . . ... ... ..............
6.2 Data Analysis with JupyterLab . . . . .. ... ... ... ...,

Raspberry Pi as AP with Rsensor Server

7.1 Imitial Setup . . . . ..

AN L L

0000 I




7.1.1
7.1.2

Prepare Image
Configure Image
7.2 Install Software
7.3 Writing a SystemD-Daemon Script
7.4  Configure Raspi Rsensor AP

7.4.1 Bind USB Stick to fixed interface address . . . . . . . . . . . .. ... ... . . .
TA2  WITISSUES . . . o o e e e e e
7.5 Write Protect SD Card . . . . . . . . . . e e e e e e

8 Development Information

8.1 Makefile

8.2  Docker Environment
8.3  Using the MySQL Docker DB from extern

9 License

10 Indices and tables

27
27
27
28

29

31




rsensor Documentation

The uracoli-rsensor project stores sensor data, received from a MQTT broker in a database.

Contents: 1



rsensor Documentation

2 Contents:



CHAPTER 1

Introduction

The script mgtt_to_db.py reads sensor data from one ore more MQTT brokers and stores it together with addi-
tional meta information in a database.

mqtt

g1
magtt-BROKERN

'1..n CFG.¥YML |

¥
£ ]
mqtt-BROKERL Q | matt_to_db.py ’ Ox__-
MQTT DB

Sensor values are characterized by their meaning, e.g. the physical quantity a value represents. Beside their basic
meaning (numeric value and physical unit), a sensor value can also have meta information attached.

The following information shall be stored in the database:
* What was measured? (numeric value and physical unit)
e When? (the timestamp of the measurement)
e Where? (the location of the sensor)

* How? (the type of the sensor, system information, software version, ...)




rsensor Documentation

4 Chapter 1. Introduction



CHAPTER 2

Usage

2.1 Installation

The installation of the latest version can be done with:

’pip install git+https://gitlab.com/uracoli-project/uracoli-rsensor.git

2.2 Getting Started

After successfull installation run:

’mqtt_to_db -h

to see the available command line options of the script.

Create now the initial configuration file myrsensor.cfg:

mgtt:
- host: test.mosquitto.org
port: 1883

prefix: rsensor-test

database:
dbtype: sqglite
dbname: /tmp/rsensor/rsensor.sqglitedb

This configuration connects to the public available MQTT broker test .mosquitto.org and stores the received
data in a SQlite database file /tmp/rsensor/rsensor.sglitedb.

Run the script and see the messages on the console:

mgtt_to_db -C myrsensor.cfg




rsensor Documentation

The file /tmp/rsensor/rsensor.sglitedb is created and can be accessed with the SQLite tool:

sgqlite3 /tmp/rsensor/rsensor.sglitedb

The next section describes how to receive test data from MQTT, that are stored in the database

2.3 Generating Test Data

The package contains also a script rs_testgen that generates appropriate formatted test data.
The script uses per default the MQTT broker on localhost :1883.

After start you will see an output:

$ rs_testgen -H test.mosquitto.org

INFO:MgttRandomGenerator:create generator class

using default sensor config: /opt/esp/ve_esp/local/lib/python2.7/site-packages/
—rsensor/data/test_node.yml

INFO:MgttRandomGenerator:connected to test.mosquitto.org:1883, prefix=rsensor-test
INFO:MgttRandomGenerator:info message on: rsensor-test/s_1111_0001/info
INFO:MgttRandomGenerator:info message on: rsensor-test/s_1111_0002/info
INFO:MgttRandomGenerator:info message on: rsensor—-test/s_1111_0003b/info
INFO:MgttRandomGenerator:data message on: rsensor-test/s_1111_0001/data
INFO:MgttRandomGenerator:data message on: rsensor-test/s_1111_0002/data
INFO:MgttRandomGenerator:data message on: rsensor-test/s_1111_0002/data
INFO:MgttRandomGenerator:data message on: rsensor-test/s_1111_0003b/data
INFO:MgttRandomGenerator:data message on: rsensor-test/s_1111_0001/data
INFO:MgttRandomGenerator:data message on: rsensor-test/s_1111_0002/data

With the command mosquitto_sub -h localhost -t "rsensor-test/#" -v you can watch the gen-

erated messages.

See rs_testgen -h for available configuration options.

6 Chapter 2. Usage



CHAPTER 3

Config File Format

3.1 Format

The config file is written in YAML syntax.
The file contains a YAML-dictionary with two predefined keywords:
* mgqtt

e database

3.2 MQTT Section

This section starts with the YAML-key mgtt and contains a list of MQTT-Brokers:

mgtt:
— host: iot.eclipse.org
port: 1883

prefix: 'clt2020/thlog’

info_topic: 'clt2020/thlog/+/info’

data_topic: 'clt2020/thlog/+/data’
— host: test.mosquitto.org

port: 1883

prefix: 'aw/thlog'

info_topic: 'aw/thlog/+/info'

data_topic: 'aw/thlog/+/data’

Each configured MQTT broker requires a YAML structure with the following keys:
host hostname or IP address of the broker
port portnumber of the mqtt service (1883 unencrypted, 3883 TLS secured)

prefix the subscritpion prefix (mqtt path to device level)



https://en.wikipedia.org/wiki/YAML

rsensor Documentation

info_topic the topic where the nodes publish their description information per default (if not given) <pre-

fix>/+/info is used.

data_topic the topic where the nodes publish their sensor data per default (if not given) <prefix>/+/data

is used.

Example

:: myprefix/mydevice/info myprefix/mydevice/data <prefix>: myprefix info_topic: +/info data_topic: +/data

3.3 Database section

This section starts with the YAML-key database and requires the dbtype key:

database:
dbtype: {sglite|mysqgl}

The rest of the data-structure depends on the database type used.

3.3.1 SQLITE Database

The SQLITE DB is configured as follows:

database:
dbtype: sqglite
dbname: /tmp/rsensor/rsensor.sglitedb

dbtype sqlite
dbname the path and name of the SQLITE-file

If dbname refers to a file that not exists, the file, including a none existing directory, is created and initialized as sqlite

database.

The data in the sqlite database can be accessed with the command:

sglite3 /tmp/rsensor/rsensor.sqlitedb
sglite> .tables
locations nodes sensors timeseries

More details about how to work with this DB refer to section SQlite Commands.

3.3.2 MySQL Database

A MySQL Database is configured as follows:

database:
dbtype: mysqgl
dbname: rsensordb
dbuser: rsensorusr
dbpasswd: topsecret
dbhost: database-server.mydomain.com

dbtype mysql

8 Chapter 3

. Config File Format




rsensor Documentation

dbname database name on the server

dbuser database user name that has write access to the database
dbpasswd password for database user

dbhost server name that hosts the database (hostname, fqdn or IP number)

The database dbname must exist and the the dbuser must have access. If the database is empty, all required tables are
created by the script.

The created tables can be listed with the command:

mysgl —-h <dbhost> -u <dbuser> -p <dbname>
Enter password: <dbpasswd>
mysgl> show tables;

o +
| Tables_in_rsensor |
o +
| locations |
| nodes \
| sensors |
| timeseries |
B +

4 rows in set (0,00 sec)

3.3. Database section 9




rsensor Documentation

10 Chapter 3. Config File Format



CHAPTER 4

MQTT Interface

4.1 Info Topic rsensor/node/+/info[r]

The =node_info= topuc is a retained topic that contains information about the sensors and actors that it contains. An
example of the JSON-data is given here:

{

"actors": [],
"node": {
"id": "51fedal0",
"name": "thlog-51fe4al0",
"board": "esp8266+bm280",
"firmware": "TempHumLogger.py",
"version": "1.02"
"geoloc": [ 1, 21,
"loctag": "WH.KG.K2",
}I
"sensors": [
{
"id": "temp",
"name": "temp",
"type": "float",
"unit": "\u00boOC"
s
{
"id": "rh",
"name": "rh",
"type": "float",
"unit": "%"

} ]

11




rsensor Documentation

4.1.1 Data Structure

The data in the info topic is a dictionary with three keywords:

{

"node": {<node_description>}
"sensors": [{<sensor_description>}, {...}, ...]
"actors": [{<actor_description>}, {}, ...]

4.1.2 Node Information <node_description>

name description
id unique id of the sensor node
name symbolic name

board type of the board
firmware | name of the firmware image

version version of the firmware image
loctag location description
geoloc geographic location of the node (optional)

4.1.3 Sensor Information <sensor_description>

name | description

id identifier of the sensor, e.g. ‘temp’

name | long name of the sensor, e.g. ‘Temperature’
type data type, e.g. float, int, bool, ...

unit name of the measurment unit

4.1.4 Actor Information <actor_description>

name | description
id identifier of the sensor, e.g. ‘coill’

4.2 Data Topic rsensor/node/+/sensor/data

In this topic data from sensors are published.

{ '"<sensor_id>"' : value,
'<sensor_idl>"' : value

}

Note: A published sensor_data message need not to contain all data defined in node_info.sensors. This is because of,
that the sensors might have different update rates.

12 Chapter 4. MQTT Interface




CHAPTER B

Database Interface

5.1 Supported Databases

* SQlite
* MySQL

5.2 Tables, Views and Indexes

The database definition is stored in the YAML-file data/schema.yml.

5.2.1 Tables

The rsensor-database consists of four tables:
¢ nodes
¢ locations
* sensors
e timeseries

The following diagram shows the relations between the table fields.

13



rsensor Documentation

@ nodes ®timeseries @sensnrs
® locations w

node jdx id sensor_1dx
= = -f/-)- location idx . id
location_idx loctag sensor idx node_name
board geolocation location idx gzgiﬁr_tinuanme
firmware description value B type P
WEFsion invalid unit

The table nodes stores node specific information (see MQTT-info topic):

mysqgl> select x from nodes;

fm fm e e e e ———— +

node_idx id | location_idx | board | firmware | version

fom S g o e e +

| 1 | 3600400 | 1 | esp8266+bm280 | TempHumLogger.py | 1.00 |

o o e o e o +

1 row in set (0.00 sec)

The field location_idx references to the table locations.

The table locations stores a list of all seen locations, based on the field loctag:

mysgl> select » from locations;

e fom o o +

| location_idx | loctag | geolocation | description |

e o ——— e o +

| 1 | WH.KG.K2 | NULL | NULL |

o i o —— S +

1 row in set (0.00 sec)

Each node serves one or sensors, all of these are stored in the table sensors:

mysgl> select x from sensors;

o ——— e i o o o e +

| sensor_idx | id | node_name | sensor_name | description | type | unit |

fmm——————— e o —————— Fmm e ——— Fmm e ——— e t—————— +

| 1 | 36004b00_temp | 36004b00 | temp | NULL | float | C |

| 2 | 36004b00_rh | 36004b00 | rh | NULL | float | % |

| 3 | 36004b00_p | 3600400 | p | NULL | float | hPa

| 4 | 36004b00_ah | 36004b00 | ah | NULL | float | g/m"3 |

| 5 | 36004b00_svp | 36004b00 | svp | NULL | float | hPa

o ——————— e Fmm—————— Fm e ————— Fmm e ——— e t————— +

5 rows in set (0.00 sec)

The individual measurement values are stored in table timeseries:

mysqgl> select x from timeseries;

o e Fmm fmm e ——— fmm————— e +

| idx | ts | sensor_idx | location_idx | wvalue | invalid |

R o —— e o o o +

| 1 | 1586237223 | 4 | 1 | 6.21505 | 0 |

| 2 | 1586237223 | 2 1 ] 34 | 0 |

| 3 | 1586237223 | 5 | 1 | 24.8118 | 0 |

(continues on next page)

14 Chapter 5. Database Interface




rsensor Documentation

(continued from previous page)

| 4 | 1586237223 | 1] 1] 20.97 | 0 |
\ 5 | 1586237223 | 3 | 1] 1019 | 0 |
\ 6 | 1586237258 | 4 | 1 | 6.21867 | 0 |
| 7 | 1586237258 | 2 | 1] 34 | 0 |
\ 8 | 1586237258 | 5 | 1 | 24.8271 | 0 |
\ 9 | 1586237258 | 1] 1] 20.98 | 0 |
| 10 | 1586237258 | 3 1] 1019 | 0 |
fo——— fomm Fommm Fomm fomm fo———————— +

5.2.2 Views

Todo: add support views in schema.yml

5.2.3 Indexes

Todo: describe indexes

5.3 SQlite Commands

The initial content of the SQLite database can be explored with the commands .tables and .schema
<tablename>:

sqgqlite> .tables
locations nodes sensors timeseries
sglite> .schema nodes
CREATE TABLE "“nodes’
(
node_idx INTEGER PRIMARY KEY NOT NULL /*!40101 AUTO_INCREMENT =/,
id VARCHAR (64) DEFAULT NULL,
location_idx INTEGER DEFAULT -1,
board VARCHAR (64) DEFAULT NULL,
firmware VARCHAR(64) DEFAULT NULL,
version VARCHAR (64) DEFAULT NULL
)i
sglite>

If data was received, the table t imeseries contains data:

sglite> select » from timeseries

idx ts sensor_idx location_idx value invalid
1 1586844220 4 1 5.68866 FALSE
2 1586844220 2 1 29.0 FALSE
3 1586844220 5 1 26.7363 FALSE
4 1586844220 1 1 22.19 FALSE

(continues on next page)

5.3. SQlite Commands 15




rsensor Documentation

(continued from previous page)

5 1586844220 3 1 1010.0 FALSE
6 1586844352 4 1 5.46655 FALSE
7 1586844352 2 1 29.0 FALSE
8 1586844352 5 1 25.6324 FALSE
9 1586844352 1 1 21.5 FALSE
10 1586844352 3 1 1011.0 FALSE

More about the representation of the data in the t imeseries table can be found in section Database Interface.

5.4 MySQL Commands

Query a specific sensor value:

select from unixtime(t.ts), s.id, t.value, s.unit from timeseries as t join sensors,

—»as s on t.sensor_idx = s.sensor_idx where s.id like "2ah";
SELECT

FROM_UNIXTIME (t.ts), s.id, t.value, s.unit
FROM

timeseries AS t

JOIN

sensors AS s ON t.sensor_idx = s.sensor_idx

WHERE

s.id LIKE '%ah';

16 Chapter 5. Database Interface




CHAPTER O

Using the Sensor Data

6.1 Dashboards with Grafana

A Dashboard displays the collected sensor data in a graphical user interface (GUI). They are used to monitor the
current and past state of a technical system. The data are repesented by widgets like graphs, bar-charts, gauges and
heat-maps. An easy to use and powerful application is Grafana, https://grafana.com.

Install and start a standard grafana container:

docker pull grafana/grafana
docker run -d -p 3000:3000 grafana/grafana

Open the URL http://172.17.0.1:3000 in the Web-Browser (usually the docker container runs on this address). Follow
the instructions to set a new password, initial login is done with user: admin, password: admin.

Setup a Data Source

At first Configure the MySQL-DB used by rsensor as data source in grafana. After all parameters are entered, press
“Save and Test”.

Setup a Dashboard with a Panel

If the test was succesful, the next step is to configure a dashboard. Select “Create Dashboard” and “Add Panel”.

In the “Query” tab press “Edit SQL” and enter the following query:

select t.ts as time_sec,
s.id as metric,

t.value
from timeseries as t
join sensors as s on t.sensor_idx = s.sensor_idx

where s.id like "Stemp"

17



https://grafana.com
http://172.17.0.1:3000

rsensor Documentation

Data Sources / MySQL

with CA Cert

Max idle

Max [ifetime

MySQOL details

Min time Intersal

User Perm

Fig. 1: Configure dialog of the data source

18 Chapter 6. Using the Sensor Data



rsensor Documentation

€&  Temp / Edit Panel

Temperatures

@

Panel

Settings

tside time range

Zoom to data

51fedad0_temp 36 temp — bs_default_temp

B Query ¥ Transform

default

Visualization

Query inspe

Graph

od
ullil

Gauge

79)

Fig. 2: Configure dialog of a panel

Discard

Stat

12.4
-

Bar gauge

6.1. Dashboards with Grafana

19



rsensor Documentation

Use and fine tune the Dashboard

Finally press “Apply” and watch the result.

By entering the “Edit” submenue, the dashboard can be further optimized and fine tuned.

Temperatures

side time range

Zoom to data

Fig. 3: Dashboard from the above example

6.2 Data Analysis with JupyterLab

. coming soon

20 Chapter 6. Using the Sensor Data



CHAPTER /

Raspberry Pi as AP with Rsensor Server

This is a collection of notes on how to configure a Raspberry Pi as IOT node.

7.1 Initial Setup

7.1.1 Prepare Image

* Copy image to SD Card: https://www.raspberrypi.org/documentation/installation/installing-images/ or:

sudo dd if=2020-05-27-raspios-buster-lite-armhf.img bs=4M status=progress,,
—conv=fsync of=/dev/sdb

¢ Mount card (on Linux)

* To enable SSH server (just create an empty file):

touch /<SD-MOUNTPOINT>/boot/ssh

7.1.2 Configure Image

login to raspi (console or with ssh pi@<RASPI-IP>)

* expand file system and reboot:

sudo raspi-config

"7 Advanced ..." / "Al Expand Filesystem"
"Finish" / "Reboot" => YES

* wait until reboot is finished and login again

21


https://www.raspberrypi.org/documentation/installation/installing-images/

rsensor Documentation

7.2 Install Software

Do the following steps:

sudo apt update
sudo apt upgrade # optional, may take longer

sudo apt install mosquitto

Prepare a virtual environment that runs uracoli-rsensor:

sudo bash

cd /opt

mkdir -p rsensor

apt install python-pip

python3 -m pip2 install virtualenv

python3 -m virtualenv ve_rsensor
ve_rsensor/bin/pip install uracoli-rsensor

To install alternatively the latest development version, run this command:

/opt/rsensor/ve_rsensor/bin/pip install -e git+https://gitlab.com/uracoli-project/
—uracoli-rsensor.git

Write a config file /opt /rsensor/rsensor.cfg,e.g.:

mgtt:
- host: 10.65.87.1
port: 1883

prefix: 'mkawdt'

database:
dbtype: mysqgl
dbname: rsensor
dbuser: rsensor
dbpasswd: rsensor
dbhost: 172.16.1.20

7.3 Writing a SystemD-Daemon Script

To collect sensor data over a long time, the script mgtt_to_db can run as Daemon-service on a Linux server, e.g.on
a Raspberry-Pi.

Create a file /etc/systemd/system/rsensor.service with the following contents:

[Unit]
Description=MgttToDb Service
After=network-online.target

[Service]

Type=simple

User=pi

Group=pi

WorkingDirectory=/opt/rsensor

ExecStart=/opt/rsensor/ve_rsensor/bin/mgtt_to_db -C /opt/rsensor/rsensor.cfg -L ERROR

(continues on next page)

22 Chapter 7. Raspberry Pi as AP with Rsensor Server




rsensor Documentation

(continued from previous page)

SyslogIdentifier=rsensor
StandardOutput=syslog
StandardError=syslog
Restart=always
RestartSec=3

[Install]
WantedBy=multi-user.target

If you choose another location then /opt/rsensor, then adapt in the file above adapt the path-names (see also
section python-ve) . Also note the option —-IL. ERROR, which reduces the amount of messages written to the system-
log. In case of problems, change it temporarily to -L. DEBUG

The script rsensor.service is activated with the following commands:

systemctl daemon-reload
systemctl enable rsensor.service
systemctl start rsensor.service

The status of the script can be verified with these commands:

# see 1f the script is running or it is crashed.
systemctl status rsensor.service

# see all log messages from the beginning of the log.
journalctl —-u rsensor.service

# see actual incoming messages
journalctl —-u rsensor.service —-f

The script can be stopped with:

systemctl stop rsensor.service

7.4 Configure Raspi Rsensor AP

Follow the article How to use your Raspberry Pi as a wireless access point (https://thepi.io) and skip the bridge settings
in this article, they are not needed for the sensor network. (alternativly see also Raspberry Pi als WLAN-Router
einrichten)

Use raspi-config and set country code to “DE” or the country where the raspi will be operated.

Software to install:

sudo apt install hostapd dnsmasqg

Before Edit cofig, stop daemons:

sudo systemctl stop hostapd
sudo systemctl stop dnsmasqg

Here are the current used configuration files.

/etc/dhcpced.conf:

7.4. Configure Raspi Rsensor AP 23



https://thepi.io/how-to-use-your-raspberry-pi-as-a-wireless-access-point/
https://www.elektronik-kompendium.de/sites/raspberry-pi/2002171.htm
https://www.elektronik-kompendium.de/sites/raspberry-pi/2002171.htm

rsensor Documentation

hostname

clientid

persistent

option rapid_commit

option domain_name_servers, domain_name, domain_search, host_name
option classless_static_routes
option interface_mtu

require dhcp_server_identifier
slaac private

interface wlan0O

static ip_address=10.65.87.1/24
denyinterfaces ethO
denyinterfaces wlanO

/etc/dnsmasqg.conf:

interface=wlan0
dhcp-range=10.65.87.100,10.65.87.200,255.255.255.0,24h

/etc/hostapd/hostapd.conf

interface=wlan0
#bridge=br0

hw_mode=g

channel=7

wmm_enabled=0
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP
ssid=MyRsensorAP
wpa_passphrase=sovershennosekretno

/etc/default/hostapd:

’DAEMON_CONFZ"/etc/hostapd/hostapd.conf"

/etc/sysctl.conf:

’net.ipv4.ip_forward:l

/etc/rc.local:

#!/bin/sh -e
_IP=$ (hostname -I) || true
if [ "$_IP" ]; then
printf "My IP address is %s\n" "S$_IP"
fi
# appended iptables-restore for AP, generated by:
# sudo iptables -t nat -A POSTROUTING -o ethO -3j MASQUERADE
# sudo sh —-c "iptables-save > /etc/iptables.ipv4.nat"
iptables-restore < /etc/iptables.ipv4.nat
exit O

24 Chapter 7. Raspberry Pi as AP with Rsensor Server



rsensor Documentation

Note: Also check the permissions of /etc/rc.local. It needs to be executable. —rwxr-xr-x 1 root root 306
Apr 4 2017 /etc/rc.local

Enable and restart the services:

systemctl enable hostapd dnsmask
systemctl unmask hostapd dnsmask
systemctl start hostapd dnsmask

7.4.1 Bind USB Stick to fixed interface address

Adapt udev rules:

cat /etc/udev/rules.d/72-xxx.rules

SUBSYSTEM=="net", ACTION=="add", ATTR{address}=="b8:27:eb:31:22:db", NAME="wlanO"
SUBSYSTEM=="net", ACTION=="add", ATTR{address}=="b8:27:eb:64:77:8e", NAME="eth(O"
SUBSYSTEM=="net", ACTION=="add", ATTR{address}=="d0:37:45:70:c6:88", NAME="wlanl"

7.4.2 Wifi Issues

Be carefull with trouble shooting, the trouble always shoots back.

Note: After hours of wasted time, the use of the Wifi stick WN722N was abondoned.

After a week of operation, the WN722N blinked more frequently then before and a setup of the AP was not possible,
even not after cold start or normal reboot.

Also switchin back to the internal Wlan0 does not bring back wifi AP. Hence the SD Card was somehow damaged and
was installed again from scratch.

Not sure if this was the reason, but I used an IOT device which frequently reconnects to the AP because of deep sleep
(the error occured after > 2500 reconnects).

In case of an error message from hostapd:

>> journalctl -u hostapd.service

—— Logs begin at Sat 2020-06-06 12:17:01 CEST, end at Sat 2020-06-06 13:16:17 CEST. ——
Jun 06 12:46:06 gretel systemd[1l]: Starting Advanced IEEE 802.11 AP and IEEE 802.1X/
—~WPA/WPA2/EAP Authenticator...

Jun 06 12:46:07 gretel hostapd[379]: Configuration file: /etc/hostapd/hostapd.conf

Jun 06 12:46:07 gretel hostapd[379]: nl80211: Driver does not support authentication/
—association or connect commands

Jun 06 12:46:07 gretel hostapd[379]: nl80211: deinit ifname=wlan0 disabled_1l1lb_rates=0

If a Wifi-USB stick like TP-LINK TL-WN722N is used, you need to install new drivers. Easy way is us-
ing MrEngmans precompiled modules. (https://www.raspberrypi.org/forums/viewtopic.php?f=28&t=62371&sid=
97t79dbe9f8ac40727b1c4ba236c9454)

Do this steps on Raspberry:

7.4. Configure Raspi Rsensor AP 25



https://www.raspberrypi.org/forums/viewtopic.php?f=28&t=62371&sid=97f79dbe9f8ac40727b1c4ba236c9454
https://www.raspberrypi.org/forums/viewtopic.php?f=28&t=62371&sid=97f79dbe9f8ac40727b1c4ba236c9454

rsensor Documentation

sudo wget http://downloads.fars-robotics.net/wifi-drivers/install-wifi -O /usr/bin/
—install-wifi

sudo chmod +x /usr/bin/install-wifi

sudo /usr/bin/install-wifi -h

sudo /usr/bin/install-wifi

After reboot the error should have been gone.

7.5 Write Protect SD Card

Finaly, after finishing the configuration, the SD card is write protected with an overlay file system. Write protection
can be enabled with:

sudo raspi-config

"7 Advanced Options"

"AB Overlay FS"

"Would you like the overlay file system to be enabled? " => yes
"Enable overlay file system on boot partition" => yes

Now the system is protected and withstands even sporadic power losses. All changes to the file system during runtime
are lost at reboot or power cycle, because they are stored in the RAM overlay section.

26 Chapter 7. Raspberry Pi as AP with Rsensor Server




CHAPTER 8

Development Information

8.1 Makefile

The important command lines for development are collected in the Makefile.

8.2 Docker Environment

The rsensor-Docker-Container contains the following components:
¢ Mysql Server
— the database is initialized with the script test/init_db.sqgl
* sqlite3
e Python
* the latest rsensor package (todo: really needed?)
¢ (todo: maybe add mosquitto)

The Container is created with the command:

cd test
docker build -t rsensor .

The container is started with:

cd test
docker run —--rm —--name rsensordb —--hostname rsensordb -v $(pwd):/test -p 5555:5000 -p,,
—3306:3306 -t -1 rsensor

Options:

-rm delete container at exit

27




rsensor Documentation

—name .... set container name

—hostname .... set hostname of the container

-v ... map local directory as volume

-p ... map ports to host system

-t 17?

-i 777

rsensor name of the container (see docker build)

At the docker-prompt you can testwise access the database:

’mysql —-u root

The script prepare_mysqgl. sql creates the user rsensor and the database rsensor:

’mysql —-u root < prepare_mysqgl.sqgl

8.3 Using the MySQL Docker DB from extern

Acess the container via its IP address with:

’mysql -u rsensor -h 172.17.0.1 «rsensor -p

The password is “rsensor” (see prepare_mysql.sql)

Todo: check how to add docker-container to DNS automatically

28 Chapter 8. Development Information



CHAPTER 9

License

The contents of uracoli-rsensor is licensed with a Modified BSD License.

All of this is supposed to be Free Software, Open Source, DFSG-free,
GPL-compatible, and OK to use in both free and proprietary applications.

See the license information in the individual source files for details.

Additions and corrections to this file are welcome.

Portions of pracoli-rsensor are Copyright (c) 2014 - 2020
Axel Wachtler,
All rights reserved.

Portions of pracoli documentation are Copyright (c) 2014-2020
Axel Wachtler,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

« Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

+ Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

« Neither the name of the authors nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

(continues on next page)

29




rsensor Documentation

(continued from previous page)

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

30 Chapter 9. License



cHAaPTER 10

Indices and tables

* genindex
* modindex

e search

31



	Introduction
	Usage
	Installation
	Getting Started
	Generating Test Data

	Config File Format
	Format
	MQTT Section
	Database section
	SQLITE Database
	MySQL Database


	MQTT Interface
	Info Topic rsensor/node/+/info[r]
	Data Structure
	Node Information <node_description>
	Sensor Information <sensor_description>
	Actor Information <actor_description>

	Data Topic rsensor/node/+/sensor/data

	Database Interface
	Supported Databases
	Tables, Views and Indexes
	Tables
	Views
	Indexes

	SQlite Commands
	MySQL Commands

	Using the Sensor Data
	Dashboards with Grafana
	Data Analysis with JupyterLab

	Raspberry Pi as AP with Rsensor Server
	Initial Setup
	Prepare Image
	Configure Image

	Install Software
	Writing a SystemD-Daemon Script
	Configure Raspi Rsensor AP
	Bind USB Stick to fixed interface address
	Wifi Issues

	Write Protect SD Card

	Development Information
	Makefile
	Docker Environment
	Using the MySQL Docker DB from extern

	License
	Indices and tables

